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The Pseudo-Marginal Framework

Assume we are interested in sampling from the posterior distribution defined by

p(θ|y) = p(y|θ)p(θ)
p(y)

, (1)

for some parameters θ and observations y. Furthermore, assume that we can
not directly evaluate p(y|θ) but we have access to a function, ĝ(u; y, θ) (that we
can evaluate pointwise), that takes some random numbers (“seed” if you will)
u ∼ r(u|θ) and outputs an unbiased (and non-negative) estimate of p(y|θ). This
means

Er(u|θ) [ĝ(u; y, θ)] =
∫
ĝ(u; y, θ)r(u|θ)du = p(y|θ),

which is the setting of the pseudo-marginal methods [Andrieu and Roberts,
2009]. Now we define a joint target distribution over θ and u as follows

π(θ, u) =
ĝ(u; y, θ)r(u|θ)p(θ)

p(y)
, (2)

which we can see is proper (integrates to one) and has the posterior as its
marginal distribution, i.e.

π(θ) =

∫
ĝ(u; y, θ)r(u|θ)p(θ)

p(y)
du =

p(y|θ)p(θ)
p(y)

= p(θ|y).

This means that if we design (almost) any approximate inference method and
apply it to (2), the marginal of that approximation will also be an approxima-
tion to the true target distribution. For example, if we design a Markov chain
(θi, ui) that has (2) as its stationary distribution, we get an approximation to the
posterior (1) by throwing away ui and keeping θi. Another example would be to
fit a variational approximation q(θ|λ)q(u|η, θ) and then maximize the evidence
lower bound (ELBO)∫

q(θ|λ)q(u|η, θ) log ĝ(u; y, θ)r(u|θ)p(θ)
q(θ|λ)q(u|η, θ)

dθdu,
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with respect to the variational parameters λ, η. The easiest thing to do, since we
do not necessarily know how to evaluate r(u|θ) point-wise, is to set q(u|η, θ) =
r(u|θ) and the ELBO simplifies∫

q(θ|λ)r(u|θ) log ĝ(u; y, θ)p(θ)
q(θ|λ)

dθdu.

This is what is called Variational Bayes with Intractable Likelihood (VBIL)
[Tran et al., 2015], leveraging pseudo-marginal ideas in variational inference.
Note that this is really just standard variational Bayes on the extended space of
θ and u with a specific choice of variational approximation. After optimizing
with respect to λ we get an approximation to the true posterior (1), i.e. q(θ|λ∗).

As for using Metropolis-Hastings we would need a proposal, e.g. q(θ′|θ)r(u′|θ′),
and the acceptance step becomes minimum of 1 and

ĝ(u′; y, θ′)r(u′|θ′)p(θ′)
ĝ(u; y, θ)r(u|θ)p(θ)

q(θ|θ′)r(u|θ)
q(θ′|θ)r(u′|θ′)

=
ĝ(u′; y, θ′)p(θ′)

ĝ(u; y, θ)p(θ)

q(θ|θ′)
q(θ′|θ)

.

We could also consider doing EP, INLA, Laplace approximation, sequential
Monte Carlo, or any other type of approximate Bayesian inference that you can
come up with, using (2) as our target distribution. The marginal distribution
over θ would be an approximation to the original posterior.

Approximate Bayesian Computation

In approximate Bayesian computation we (typically) assume we can simulate
from the likelihood for a given parameter value, however, we can not evaluate
its density point-wise. We solve this by introducing a systematic bias into the
model, replacing p(y|θ) in (1) by

pε(y|θ) =
∫
Kε(y, x)p(x|θ)dx,

whereKε is a kernel, e.g. exp
{
− 1

2ε2
(y − x)2

}
, and p(x|θ) is our data simulator.

This means we are now actually interested in approximating the “likelihood-
free” (or ABC) posterior

pLF(θ|y) ∝ pε(y|θ)p(θ) = p(θ)

∫
Kε(y, x)p(x|θ)dx. (3)

This is a systematic error we make that no matter how well we approximate (3)
it will never be exactly equal to the true posterior (1) for any non-zero ε.

It might seem like we have not really gained anything because to evaluate
pε(y|θ) point-wise we evaluate an intractable integral. Well, we can easily gen-
erate an unbiased estimate of it by simulating from x ∼ p(x|θ) and returning
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Kε(y, x). This is straightforward to extended to the many-sample case

1

N

N∑
i=1

Kε(y, x
i), xi ∼ p(x|θ),

which fits very nicely within the pseudo-marginal framework! That is we can
identify

ĝ(u; y, θ) =
1

N

N∑
i=1

Kε(y, x
i),

u := x1:N , r(u|θ) =
N∏
i=1

p(xi|θ).

However, note that now ĝ is an unbiased estimate of pε(y|θ) and not p(y|θ).
We can still use the pseudo-marginal framework with the understanding that
our approximation will now have the likelihood-free posterior pLF(θ|y) as its
marginal. For completeness this is the new target distribution

π(θ, u) = π(θ, x1:N) ∝ p(θ)
1

N

N∑
i=1

Kε(y, x
i) ·

N∏
i=1

p(xi|θ). (4)

Connection with Automatic Variational ABC

We can now show the correctness of the approach taken by Moreno et al.
[2016]. It can be interpreted as variational Bayes (i.e. VBIL) with the repa-
rameterization trick on both q(θ|λ) and r(u|θ) for the target distribution in (4).
Note that if we do not want to use q(u|θ, η) = r(u|θ), Moreno et al. [2016]
do not in some of the experiments, we can work under the assumption that
x = f(ω, θ), ω ∼ m(ω), i.e. reparameterization of p(x|θ). We now maximize
the following ELBO∫
q(θ|λ)

N∏
i=1

[
q(ωi|θ, η)

]
· log

p(θ) 1
N

∑N
i=1Kε(y, f(ω

i, θ))
∏N

i=1m(ωi)

q(θ|λ)
∏N

i=1 q(ω
i|θ, η)

dθdω1:N ,

and then apply the reparameterization trick on both q(θ|λ) and q(ωi|θ, η). We
need to assume that we can evaluate (and differentiate)m(ω) point-wise. Again,
it can be interpreted and motivated as standard variational Bayes on the ex-
tended space of θ and ω1:N . The pseudo-marginal framework now says that
q(θ|λ) is an approximation for the likelihood-free posterior, see Tran et al.
[2015] for details and assumptions for this to hold.

Note that this is not exactly how they motivate it in the paper, however, it is how
I would justify what they do.
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Connection with Hamiltonian ABC

Assume again that we can further reparameterize the simulator as x = f(ω, θ), ω ∼
m(ω), i.e. this is equivalent with x ∼ p(x|θ). This means we can still use the
pseudo-marginal framework but now on the extendend space (θ, ω1:N) with the
target distribution

π(θ, ω1:N) =
p(θ) 1

N

∑N
i=1Kε (y, f(ω

i, θ))

pε(y)

N∏
i=1

m(ωi), (5)

and it retains the likelihood-free posterior (3) as its marginal over θ. In the
Hamiltonian ABC paper [Meeds et al., 2015] they then alternate between sam-
pling θ|ω1:N and w1:N |θ using HMC and another Markov chain method (flip-
ping), respectively. That should mean we need to take gradients of the following
with respect to parameters

∇θ log p(θ) +∇θ log

(
N∑
i=1

Kε

(
y, f(ωi, θ)

))
. (6)

If we could calculate the above gradient exactly, which they assume in Moreno
et al. [2016], we could just use “standard” HMC for updating θ|ω1:N . In fact
conditional on ω1:N there is no extra randomness arising from the likelihood-
simulator! So applying a finite difference approximation to the gradient of the
second term in (6) introduces an error for sure, but not really any stochastic error
for which we would need the stochastic gradient Monte Carlo framework. The
noise I assumed came in through the use of SPSA to approximate the gradient,
an almost unbiased estimate of the second gradient term above. Together with
the stochastic gradient Monte Carlo methods described in the paper it should re-
sult in something that more (or less?) samples from the likelihood-free posterior
(3).

Another important point here is that (6) might seem to have an unbiased approx-
imation of the ABC likelihood that we have to evaluate through a logarithm.
However, because we are using the pseudo-marginal approach this is just part
of our target distribution!
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